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NUMERICAL COMPUTATIONS OF CRITICAL FLOW 
OVER A WEIR 

M. J. OCARROLL AND E. F. TOR0 

Department of Mathematics and Statistics, Teesside Polytechnic, Middlesbrough 7S 1 3BA, Clewland, England 

SUMMARY 

Computing critical flows in hydraulics involves three problems in one: the internal flow problem, the 
location of the free suiface and the determination of the critical flow rate. The subject can involve such 
difficulties as non-uniqueness, non-existence, ill-conditioning and catastrophes. 

This paper discusses the difficulties relating to computing critical flows over weirs. A new rapidly 
convergent method of determining the critical flow rate is presented and various results are shown 
using it with finite element discretization and with a new streamline shifting method. Numerical results 
are in good agreement with published data, both numerical and experimental. 
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INTRODUCTION 

The computation of steady ideal flows with free surfaces under gravity has been the subject 
of a number of recent investigations, both for configurations of practical engineering interest 
and for fundamental enquiries on wave phenomena. The non-linear free surface problems 
may have non-unique solutions in certain cases. If a flow rate is prescribed too high, or if the 
flow domain is truncated wrongly relative to an unknown wave, there may be no solution at 
all. When the problem involves determining a critical flow rate, it may become ill- 
conditioned or catastrophic. * 

Numerical solutions go back to the finite difference work of Southwell and Vaisey.' More 
recently finite have been used to improve the representation of irregular 
geometry. Still more recently boundary elements have been used' for wave studies. The 
difficulties inherent in the discharge problems have been treated by ad hoc methods which 
may be uncertain or expensive for nearly critical flows. The numerical computations require 
the simultaneous 'solution of three coupled problems, namely (i) the determination of the 
internal velocity distribution (the $-problem), (ii) the location of the free surface (the 
H-problem), and (iii) the computation of the correct value of the discharge Q (the 
Q-problem). 

Aitchison4 computed critical flow over a sharp crested weir for three different triangular 
weir cases. By using a variational formulation in terms of stream function, the H and $ 
problems are solved simultaneously. The solution to the Q-problem is found from an 
interpolation procedure based on the reversal of phase of upstream waves as Q increases 
through the critical value. All computations are carried out on channels with long upstream 
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and downstream sections. The computational flow domain is then large, which results in a 
correspondingly large computational effort. Moreover, these upstream and downstream 
sections are not of great interest, since the solution is expected to be asymptotically uniform 
there. By using a different technique of finding critical Q, it is possible to take a much shorter 
computational region.6 An added computational cost in Aitchison’s work arises from 
numerical computation of derivatives of the functional. 

A variational approach to computing the critical flow rate was introduced by Varoglu and 
Finn.’ They modified a functional depending on stream function and made it stationary with 
respect to flow rate as well as with respect to stream function. However, the extra condition 
obtained is only a combination of the flow equations and the free-surface pressure condition. 
It introduces n o  criterion which can fix the flow rate. The iterative method converges to a 
plausible result, but the dependent set of stationary equations could admit a range of flow 
rates, so the method is not valid for determining critical flows. 

Historically the variational method for stream function was incorrectly adapted from that 
for velocity potential. Luke’ gave the velocity potential principle but then Ikegawa and 
Washizu3 expressed the same functional in terms of stream function instead of using the 
complementary principle. O’Carroll and Harrison9 formulated a correct principle for the 
stream function giving the free surface conditions naturally under the constraint of constant 
stream function on the surface. This has been used successfully by other authors. A fuller 
explanation appears in reference 10. 

In this paper we report on numerical computations of critical flow over a weir using three 
different algorithms developed by the authors.6 All computations are carried out in short 
flow domains, which results in considerable savings. The solution to the Q-problem is based 
on the observation that for a range of values of the discharge Q, the upstream displacement 
of the computed surface from the appropriate asymptotic level varies almost linearly with 
Q2, and this displacement is zero for the critical solution. This results in a rapidly convergent 
iteration procedure. 

Numerical results for three weir cases are in good agreement with those published by 
Aitchison4 as well as with published experimental data.” 

t s 1 

STATEMENT OF THE PROBLEM 

We consider a two-dimensional flow domain R as illustrated in Figure 1. The stagnation 
level is measured by H,, the channel length by L, the bed profile (BE) by y = b(x)  and the 

Y 

0 stagnation level L 
* x  

Figure 1. Flow domain 
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free surface position (FS) by y = b(x )  + h(x). Here h(x) measures the depth of flow and is to 
be determined, whereas b(x)  is prescribed and in this case it is determined by a triangular weir 
placed on a horizontal bottom. The weir height at the crest is p and the other dimensions are 
as indicated there. The inlet boundary BF and the outlet boundary ES are placed at distances 
U and 0, respectively, from the weir ends. 

The free surface FS is under the influence of gravity, and effects of surface tension are 
neglected. Considering the flow in terms of a stream function +, and assuming that the flow is 
steady, incompressible, non-viscous and irrotational, the stream function satisfies Laplace's 
equation in R. As regards the boundaries BF and ES, a condition of normal flow is imposed 
by requiring the vanishing of the normal derivative a+/an. This condition corresponds to 
asymptotically uniform flows upstream and downstream provided U and D are large enough. 
The bed and free surface are streamlines. For an assumed total head Ha, a discharge Q and a 
free surface position, the +-problem is governed by the following boundary value problem: 

d2+/ax2 +d2+/ay2 = 0 in R 

a+/an = O  on BF and ES 
+ = Q o n B E  and + = O o n F S  ( 1) 

The solution of (1) gives the velocity distribution V in R with V defined as V =  

An additional boundary condition on FS is to be satisfied. The pressure is prescribed there 
(-a+/ay, a+/ax>. 

and taken as atmospheric. Bernoulli's law then gives 

$(a+/lan)" + g y  = 0 on FS (2) 
where g is the acceleration due to gravity. This equation provides a necessary condition for 
finding the position of the free surface (the H-problem). 

The free boundary value problem (1)-(2), which governs the combined H-+ problems, is 
equivalent to the variational problem' with non-dimensionalized functional 

and the constraints 

+ = Q o n B E  and +=OonFS (4) 

This means that for a given stagnation level and discharge Q (within a certain range of values 
for Q) a stationary point of J is a solution to the combined H-+ problems. 

In (3) and (4) all quantities have been non-dimensionalized with respect to length Ho (see 
Figure 1) and time (H0/g)'/', including the x and y co-ordinates. 

It is worth noting that the mathematical formulation of the H-+ problem is valid for any 
bed configuration. Thus, the derived numerical methods being used to compute critical flows 
over a weir can also be applied to solve problems having other bed profiles.6 

When considering the special case of uniform and horizontal flows, the governing station- 
ary equations are reduced to the purely algebraic relation 

2 h 3 - 2 ~ +  Q~ = 0 ( 5 )  

This cubic equation has two physically meaningful solutions, S1 and S2, in the real interval 
(0,l) for a prescribed value of the discharge Q in (0, (8/27)lI2). For Q2 = 8/27, S1 and S2 
coalesce and S1 = S2 = 2/3.  S1 and S2 represent rapid and tranquil horizontal uniform flows, 
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respectively. Transition from S2 to S ,  is made possible by constrictions such as sluicegates, 
spillways, weirs and other control mechanisms. In this context we use the term critical flow 
for a smooth transitional flow with asymptotic depth S2 upstream and asymptotic depth S1 
downstream (see Figure 1). 

Here we deal with computations of critical flow over a weir. This involves the simultaneous 
solution to the Q-H-+ problem, that is to say, we need to compute the correct value of the 
discharge Q,, the correct position of the associated free surface and the flow distribution in 
the corresponding domain. We consider four weir cases A, B, C and D with dimensions as 
illustrated in Table I. For the examples A, B and C there are numerical results computed by 
Aitchison; with which we make comparisons. In addition, comparisons are also made with 
experimental data obtained from British Standards. l1 

In the numerical computation of the H-+ problem we use our algorithms FETR, FEBI 
and NODE, which are based on the stream function variational formulation of the problem. 

The algorithms FETR and FEBI are derived from a semiregular finite element discretiza- 
tion of the flow domain. The former assumes linear interpolation for + on each triangular 
element and the latter assumes a bilinear interpolation on quadrilateral elements. FEBI 
requires an isoparametric transformation of the flow domain. By performing exact integra- 
tion and differentiation, the H-+ problems are then governed by explicit sets of non-linear 
algebraic equations (for the H-problem) and linear algebraic equations (for the +-problem). 
Numerical solution to the combined H-+ problem (when Q is prescribed) is then obtained 
by alternately solving the non-linear and linear systems of equations. The third algorithm 
(NODE) is obtained by using a Ritz-Kantorovich type of approximation for + in the 
y-direction in which the problem remains continuous in the x-direction. The stationary 
conditions yield a system of non-linear ordinary differential equations in x for the stream- 
lines. A finite difference discretization in the x-direction then produces an explicit system of 
non-linear algebraic equations. This system governs both the H and + problems and thus 
there is no alternating procedure between two systems (as with FETR and FEBI) Full 
details, comparisons and discussion of these algorithms are given by 

FLOW DOMAIN AND COMPUTATIONAL STRATEGY 

The flow domain (Figure 1) is completely determined by the bed profile, the position of the 
inlet and outlet boundaries and the position of the free surface, which is to be computed. The 
bed profile is prescribed and is given by the dimensions of the particular weir being 
considered. Also, the position of the end boundaries BF and ES is prescribed, but care is 
required when choosing the distances U and D since the boundary conditions impose normal 
flow. Clearly, when these boundaries are too close to the weir ends, the imposed boundary 
conditions are not satisfied by the critical flow. As a result the computations (for a prescribed 
value of the discharge Q) fail to find a solution. The asymptotic level S1 downstream of the 
weir can only be attained exactly when the length D is infinite. But, owing to the 
discretization of the problem, the boundary conditions at ES can be approximately satisfied 
for a relatively short distance D. As regards the satisfaction of the boundary conditions at 
BF, the situation is different, since the choice of a finite distance U can correspond to a 
solution of the continuous problem with upstream waves. Moreover, in the critical flow the 
asymptotic level S2 upstream is attained at a short distance U, depending obviously on the 
weir height. This observation is based on our computations and the solution profiles of 
Ait~hison.~ In the computations, it is therefore justified to use a short channel and our 
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numerical results support this argument. This results in appreciable savings in computational 
effort . 

The dimensions for the four weir examples considered in this paper are given in Table I. 
For the examples A, B and C Aitchison4 used the same values of the ratio Ho/p, but much 
larger values of Ulp and Dlp. 

Table I. Definition of 
computational flow domain 

of four weir cases 

A 7.90 7 7 
B 5.69 4 4 
C 4.63 2 4 
D 5.00 2 3.5 

Our process starts by prescribing a value Q1 of the discharge, then solving the H-$ 
problems to obtain a surface profile HI and a corresponding velocity distribution in the 
interior of the domain. Here H, is a vector given as H1 = (h i ,  h i , .  . . , hk),  where h: 
represents the depth of flow at station k. Normally, the computed profile determined by €3, is 
not the required free surface and has a displacement d, = h: - S: at the inlet boundary BF, 
where S: is the tranquil one-dimensional solution corresponding to Q1 and computed from 
equation (5). 

In a similar way a second prescribed discharge Q2 gives rise to a surface profile determined 
by H2=(h:, h;, . . . , h:) with a corresponding internal velocity distribution. Now the dis- 
placement at BF is d2 = h;- S;  where SZ is the tranquil solution corresponding to QZ, 
computed from equation (5). 

In Figure 2 we show two computed surface profiles H, and H2 for case D of Table I with 
Q2 = 0-20 and Q2 = 0.22. The computations were carried out using the NODE algorithm, 
which provides automatically the internal streamlines, also displayed there. The mesh used 
has 26 stations and 5 streamlines (26 x 5). 

In order to observe the behaviour of the surface profile at the inlet when Q is varied we 
carried out many computations. In Table I1 we show prescribed values Q? and the 
displacements 4 of the corresponding computed surface profiles Hi. 

1 

0 2 5  

Figure 2. Computed free surfaces and streamline profiles for Q2 = 0-20 and Q2 = 0-22 using NODE algorithm 
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Table 11. Displacement values 
(4)  of computed surface profiles 

for prescribed values 

Q: 0.20 0.21 0.22 
di 0.0485 0.0007 -0.0478 

By observing Table I1 and Figure 2 we clearly see that the required solution Q% with a 
corresponding zero displacement d lies between Q2=0.20 and Q2=0.22, and the point 
P2 = (0.21,0.0007) is very close to the solution. The empirical results of the British 
Standard" give Q2=0.2006 for this weir, but it is to be expected that the computed ideal 
flow admits a slightly larger discharge. 

In all computations we observe that the Q2- d relation behaves almost linearly (see Table 
11). Thus we imptemented an iterative procedure for computing the critical value Q, based 
on linear interpolation: 

Qf = Q?-2-4-2(Qf-I- Q?-2)/(4-1-4-2) (6) 
Once the surface profile Hi (and the internal velocity distribution) corresponding to Qi has 

been computed we test whether the displacement at the inlet satisfies 

4 = - $1 <TOLD (7) 

where TOLD is a preassigned small non-negative number. In the present computations we 
took TOLD = If at any stage, including of course the two initial steps, relation (7) is 
satisfied we stop the interation procedure. The algorithm for computing Q, is described by 
the flow chart of Figure 3. 

START i-1 

1 Q; \ 
t 

SOLVE H-$ PROBLEM 

To FIND PROFILE 

Hi - (hi,hi,..,hA) 
COMPUTE s; 

. .  
EQUATION (5) EQUATION (6) 

Yes no 

i+i+l 

Figure 3. Algorithm for computing Q, 
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In the computations reported here, it took normally two iterations, after the two initial 
values, to obtain the solution Q, to the critical discharge problem. In the algorithm (Figure 
3) the initial values Q1 and Qz may be taken to lie anywhere in the interval (0, v/(8/27)), but 
it is obviously more realistic to choose them to be greater than the experimental result. 

It may happen that no solution Hi is computed for a given Qi. This could be particularly 
the case for the first two guessed values Q1 and Qz. Such a situation is an indication that the 
inlet boundary BF is misplaced. That is to say, the given value for the discharge has an 
associated surface profile with corrugations upstream of the weir for which the position of BF 
does not approximately coincide with a crest or trough. The imposed boundary conditions 
then do not correspond to an existing solution. This difficulty can be effectively overcome by 
trying a new position for BF or a new value for Q. 

NUMERICAL RESULTS 

In this section we report on the computed solution to the complete Q-H-+ problem for the 
three weir cases A, B and C of Table I. The computation of the H-+ problem in each case is 
carried out by using the algorithms FETR, FEBI and NODE with meshes 22x4 (for case 
A), 16x4 (for case B) and 14x4 (for case C). 

In Table I11 we show the complete Q-iteration process (Figure 3) in the computations for 
cases A, B and C using FETR to solve the H-+ problem. In all three examples four 
Q-computations were carried out and only two steps in the iteration process were necessary 
to find the solution. 

Table 111. Q-iteration process for cases A, B and C in FETR computations 

Case A Case B Case C 

QT 4 QT 4 QT 4 
1 0.50990 -0.0054 0.46840 0.0553 0.43451 0.0565 
2 0-51186 -0.0195 0.47980 -0.0122 0.45166 -0.0251 
3 0.50916 -0.0002 0.47776 -0.0003 0.44643 -0.0017 
4 0.50912 0.0000 0.47770 0.0000 0.44608 0-0000 

When solving the H-q5 problem for a given Q using the finite element algorithms FETR 
and FEBI, the alternating iteration process between the H and the + problems is a potential 
source of difficulty. The NODE algorithm however, is very well behaved. In Table 4 we show 
the number of H-+ iterations for all three cases A, B and C when using FETR. 

Table IV. Number of H-JI itera- 
tions in FETR computations 

Cases 
Q-iteration A B C 

1 8 17 19 
2 7 12 12 
3 8 9 10 
4 3 4 6  
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Generally, the number of H-4 iterations in the finite element computations (FETR and 
FEBI) decreases as the critical solution is approached. This is partly due to the way in which 
we have chosen the required initial profile for the solution of the H-4 problem at each 
Q-iteration. For i >2 we take as initial profile in the ff-4 problem the computed profile at 
stage i - 1. For the first two cases we normally chose guessed profiles that take on the level 
S2 upstream and S1 downstream with an estimated smooth transition around the weir. 

Complete numerical results for critical discharge are shown in Table V, where, for 
comparison, we have also included the numerical results due to Aitchison4 and the experi- 
mental results from the British Standard." 

Table V. Computed values for critical discharge for 
cases A, B and (2  using algorithms FETR, FEBI and 

NODE 

Case A B C 

Present FETR 0.5091 0.4777 0.4461 
computations FEBI 0.5101 0.4796 0.4493 

NODE 0.5102 0.4791 0.4477 

Aitchison 0.5110 0.4798 0.4517 

Experimental 0.5110 0.4684 0-4346 

The slight difference between our computed values of the critical discharge and those of 
Aitchison is due to slightly different discretization. Aitchison has a much larger computa- 
tional flow domain, especially upstream of the weir. Also, Aitchison's mesh has one more 
node in the y-direction and has special mesh refinement near the crest of the weir. 

Both Aitchison's and the present results are a continuous ideal flow model which can admit 
neither a boundary layer nor a circulation bubble behind the crest, as occur in real flow. Such 
limitations account for the small discrepancy between numerical and experimental results, 
which increases with relative weir size. 

Solution surface profiles for cases A, B and C using the FETR and NODE algorithms are 
shown in Figures 4, 5 and 6, respectively. 

1 , FETR 

\ 

0 2.658 

Figure 4. Computed critical free surface profiles for case A by FETR and NODE algorithms 
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Figure 5 .  Computed critical free surface profiles for case B by FETR and NODE algorithms 

0 2.0078 

Figure 6. Computed critical free surface profiles for case C by FETR and NODE algorithms 

MESH REFWEMENIS AND DOMAIN EXTENSIONS 

In this section further computations are given for the weir case B to show the effect of 
enlarging both the upstream and downstream sections and refining the mesh in various ways. 
In Table VI we show the various B-subcases and the computed values for the critical 
discharge Q, 

Table VI. Computed values of Q, for various channel lengths and 
meshes 

Present computations 
Aitchison’s 

Case U D Mesh FETR NODE result 
~ ~ ~~ 

B 4p 4p 16x4 0.47770 0.47906 
BA1 13p l o p  31x4 0.47868 0.47986 
BA2 13p lop 31x5 0.47861 0.47966 0.4798 
B l  4p 4p 16x8 0.47766 0.47904 
B2 4p 4p 31x4 0-47869 0.47934 
B3 4p 4p 31x8 0.47852 - 
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Cases BA1 and BA2 of Table VI have long upstream and downstream sections, and the 
results show the justification of using a short channel. Both BA1 and BA2 correspond to 
Aitchison’s flow geometry for weir B (H,lp = 5.69, Table I). Meshes are still different with 
BA2 being the closest case to that of Aitchison (31x5). The results indicate that a longer 
channel brings about an increase in the value of Q,. Compare value Q, of case B to those of 
BA1 and BA2 under FETR, for instance. The increase is about 0.2 percent. The increase 
observed on the NODE computations is even smaller. 

The small difference observed between cases BA1 and BA2 suggests that a mesh 
refinement in the y-direction alone results in a slight decrease in the computed value of Q,. 
This is found to be the case in other computations as well, although it is somewhat surprising 
since more degrees of freedom in the discretization might be expected to lead to a higher 
discharge. The effect may be due to discretization arising from elongation of element shape. 

Refinement in the x-direction alone results in an increased value for Q,. This is clearly 
seen in Table VI. Simultaneous refinements in both x and y directions bring about an 
increased value for Q,. In this case, halving the mesh size in both directions increases the 
computed Q, by less than about 0.2 per cent. 

As regards the computed free surface profiles shown in Figures 4-6, a difference between 
FETR and NODE computed results can be observed in the vicinity of the weir. This 
becomes more noticeable as the weir height increases. In Table VII we show the height h, of 
the computed free surface at the crest of the weir, for different cases. 

Table VII. Height h, of computed free surface 
profiles at weir crest 

- 

Case B BA1 BA2 B3 

FETR 0.7863 0.7862 0.7848 0.7803 
NODE 0.7802 0.7802 0.7808 - 

The enlargement of the computational flow domain produces almost no variation in the 
computed value for h,. More appreciable but still small variations occur with mesh refine- 
ments. More importantly, the value of h, in the FETR computations becomes closer to that 
of the NODE computations under mesh refinement in both the x and y directions, 
confirming that the difference in the two algorithms is due to discretization. 

CONCLUDING REMARKS 

A rapidly convergent iterative procedure for computing the correct value Q, for the initially 
unknown critical discharge in flows over a weir has been presented. The method requires 
only short computational flow domains with consequent savings in computation. 

At each Q-iteration, the solution of the non-linear problem of finding the free surface 
position (and the corresponding internal velocity distribution) is efficiently computed by 
three different algorithms developed by the authors. These algorithms can also be applied to 
solve open channel flow problems with arbitrary bed profile. 

Application of the method for computing critical flow to a family of weirs yields numerical 
results that are in good agreement with published data, both numerical and experimental. 
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